Extreme Nonlinear Optics: An Introduction by Martin WegenerEnglish | PDF | 2005 | 225 Pages | ISBN : 354022291X | 11 MB
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged.
Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself.