Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Methods by Philippe Blanchard English | PDF | 2003 | 469 Pages | ISBN : 1461265894 | 38.8 MB
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. A comprehensive bibliography and index round out the work.
TTC Video - Mastering Linear Algebra: An Introduction with Applications Course No. 1056 | .MP4, AVC, 2000 kbps, 1280x720 | English, AAC, 192 kbps, 2 Ch | 24x30 mins | + PDF Guidebook | 11.2 GB Lecturer: Professor Francis Su, PhD
Transformation Geometry: An Introduction to Symmetry by George E. Martin English | PDF | 1982 | 251 Pages | ISBN : 0387906363 | 29.7 MB
Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an underĀ standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry.