Prime Divisors and Noncommutative Valuation Theory by Hidetoshi Marubayashi , Fred Van OystaeyenEnglish | PDF | 2012 | 225 Pages | ISBN : 3642311512 | 2.1 MB
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.